Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 442
1.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538744

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


AMP-Activated Protein Kinases , Aniline Compounds , Myeloid Cell Leukemia Sequence 1 Protein , Pyrimidines , Sulfonamides , bcl-X Protein , Humans , Animals , Aniline Compounds/pharmacology , Sulfonamides/pharmacology , AMP-Activated Protein Kinases/metabolism , Mice , bcl-X Protein/metabolism , bcl-X Protein/antagonists & inhibitors , Cell Line, Tumor , Pyrimidines/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Pyrazoles/pharmacology , bcl-Associated Death Protein/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Phosphorylation/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Drug Synergism
2.
Cell Death Dis ; 15(3): 183, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429301

Metastatic BRAFV600E colorectal cancer (CRC) carries an extremely poor prognosis and is in urgent need of effective new treatments. While the BRAFV600E inhibitor encorafenib in combination with the EGFR inhibitor cetuximab (Enc+Cet) was recently approved for this indication, overall survival is only increased by 3.6 months and objective responses are observed in only 20% of patients. We have found that a limitation of Enc+Cet treatment is the failure to efficiently induce apoptosis in BRAFV600E CRCs, despite inducing expression of the pro-apoptotic protein BIM and repressing expression of the pro-survival protein MCL-1. Here, we show that BRAFV600E CRCs express high basal levels of the pro-survival proteins MCL-1 and BCL-XL, and that combining encorafenib with a BCL-XL inhibitor significantly enhances apoptosis in BRAFV600E CRC cell lines. This effect was partially dependent on the induction of BIM, as BIM deletion markedly attenuated BRAF plus BCL-XL inhibitor-induced apoptosis. As thrombocytopenia is an established on-target toxicity of BCL-XL inhibition, we also examined the effect of combining encorafenib with the BCL-XL -targeting PROTAC DT2216, and the novel BCL-2/BCL-XL inhibitor dendrimer conjugate AZD0466. Combining encorafenib with DT2216 significantly increased apoptosis induction in vitro, while combining encorafenib with AZD0466 was well tolerated in mice and further reduced growth of BRAFV600E CRC xenografts compared to either agent alone. Collectively, these findings demonstrate that combined BRAF and BCL-XL inhibition significantly enhances apoptosis in pre-clinical models of BRAFV600E CRC and is a combination regimen worthy of clinical investigation to improve outcomes for these patients.


Antineoplastic Agents , Apoptosis , Carbamates , Colorectal Neoplasms , Protein Kinase Inhibitors , bcl-X Protein , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Apoptosis/drug effects
3.
Clin Cancer Res ; 30(9): 1739-1749, 2024 May 01.
Article En | MEDLINE | ID: mdl-38456660

PURPOSE: MEK inhibitors (MEKi) lack monotherapy efficacy in most RAS-mutant cancers. BCL-xL is an anti-apoptotic protein identified by a synthetic lethal shRNA screen as a key suppressor of apoptotic response to MEKi. PATIENTS AND METHODS: We conducted a dose escalation study (NCT02079740) of the BCL-xL inhibitor navitoclax and MEKi trametinib in patients with RAS-mutant tumors with expansion cohorts for: pancreatic, gynecologic (GYN), non-small cell lung cancer (NSCLC), and other cancers harboring KRAS/NRAS mutations. Paired pretreatment and day 15 tumor biopsies and serial cell-free (cf)DNA were analyzed. RESULTS: A total of 91 patients initiated treatment, with 38 in dose escalation. Fifty-eight percent had ≥3 prior therapies. A total of 15 patients (17%) had colorectal cancer, 19 (11%) pancreatic, 15 (17%) NSCLC, and 32 (35%) GYN cancers. The recommended phase II dose (RP2D) was established as trametinib 2 mg daily days 1 to 14 and navitoclax 250 mg daily days 1 to 28 of each cycle. Most common adverse events included diarrhea, thrombocytopenia, increased AST/ALT, and acneiform rash. At RP2D, 8 of 49 (16%) evaluable patients achieved partial response (PR). Disease-specific differences in efficacy were noted. In patients with GYN at the RP2D, 7 of 21 (33%) achieved a PR and median duration of response 8.2 months. No PRs occurred in patients with colorectal cancer, NSCLC, or pancreatic cancer. MAPK pathway inhibition was observed in on-treatment tumor biopsies. Reductions in KRAS/NRAS mutation levels in cfDNA correlated with clinical benefit. CONCLUSIONS: Navitoclax in combination with trametinib was tolerable. Durable clinical responses were observed in patients with RAS-mutant GYN cancers, warranting further evaluation in this population.


Aniline Compounds , Mutation , Neoplasms , Proto-Oncogene Proteins p21(ras) , Pyridones , Pyrimidinones , Sulfonamides , bcl-X Protein , Humans , Female , Pyridones/administration & dosage , Pyridones/adverse effects , Pyridones/therapeutic use , Male , Middle Aged , Aniline Compounds/administration & dosage , Aniline Compounds/adverse effects , Aniline Compounds/therapeutic use , Pyrimidinones/administration & dosage , Pyrimidinones/adverse effects , Aged , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/genetics , Adult , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Aged, 80 and over , GTP Phosphohydrolases/genetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome
4.
J Biol Chem ; 299(2): 102875, 2023 02.
Article En | MEDLINE | ID: mdl-36621626

Aurora kinases (AURKs) are mitotic kinases important for regulating cell cycle progression. Small-molecule inhibitors of AURK have shown promising antitumor effects in multiple cancers; however, the utility of these inhibitors as inducers of cancer cell death has thus far been limited. Here, we examined the role of the Bcl-2 family proteins in AURK inhibition-induced apoptosis in colon cancer cells. We found that alisertib and danusertib, two small-molecule inhibitors of AURK, are inefficient inducers of apoptosis in HCT116 and DLD-1 colon cancer cells, the survival of which requires at least one of the two antiapoptotic Bcl-2 family proteins, Bcl-xL and Mcl-1. We further identified Bcl-xL as a major suppressor of alisertib- or danusertib-induced apoptosis in HCT116 cells. We demonstrate that combination of a Bcl-2 homology (BH)3-mimetic inhibitor (ABT-737), a selective inhibitor of Bcl-xL, Bcl-2, and Bcl-w, with alisertib or danusertib potently induces apoptosis through the Bcl-2 family effector protein Bax. In addition, we identified Bid, Puma, and Noxa, three BH3-only proteins of the Bcl-2 family, as mediators of alisertib-ABT-737-induced apoptosis. We show while Noxa promotes apoptosis by constitutively sequestering Mcl-1, Puma becomes associated with Mcl-1 upon alisertib treatment. On the other hand, we found that alisertib treatment causes activation of caspase-2, which promotes apoptosis by cleaving Bid into truncated Bid, a suppressor of both Bcl-xL and Mcl-1. Together, these results define the Bcl-2 protein network critically involved in AURK inhibitor-induced apoptosis and suggest that BH3-mimetics targeting Bcl-xL may help overcome resistance to AURK inhibitors in cancer cells.


Antineoplastic Agents , Apoptosis , Aurora Kinases , bcl-X Protein , Humans , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/metabolism , Aurora Kinases/antagonists & inhibitors , bcl-2-Associated X Protein/metabolism , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/physiopathology , Enzyme Activation/drug effects , HCT116 Cells , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism
5.
Chembiochem ; 23(12): e202100689, 2022 06 20.
Article En | MEDLINE | ID: mdl-35263486

Apoptosis is a highly regulated cellular process. Aberration in apoptosis is a common characteristic of various disorders. Therefore, proteins involved in apoptosis are prime targets in multiple therapies. Bcl-xL is an antiapoptotic protein. Compared to other antiapoptotic proteins, the expression of Bcl-xL is common in solid tumors and, to an extent, in some leukemias and lymphomas. The overexpression of Bcl-xL is also linked to survival and chemoresistance in cancer and senescent cells. Therefore, Bcl-xL is a promising anticancer and senolytic target. Various nanomolar range Bcl-xL inhibitors have been developed. ABT-263 was successfully identified as a Bcl-xL /Bcl-2 dual inhibitor. But it failed in the clinical trial (phase-II) because of its on-target platelet toxicity, which also implies an essential role of Bcl-xL protein in the survival of human platelets. Classical Bcl-xL inhibitor designs utilize occupancy-driven pharmacology with typical shortcomings (such as dose-dependent off-target and on-target platelet toxicities). Hence, event-driven pharmacology-based approaches, such as proteolysis targeting chimeras (PROTACs) and SNIPERs (specific non-genetic IAP-based protein erasers) have been developed. The development of Bcl-xL based PROTACs was expected, as 600 E3-ligases are available in humans, while some (such as cereblon (CRBN), von Hippel-Lindau (VHL)) are relatively less expressed in platelets. Therefore, E3 ligase ligand-based Bcl-xL PROTACs (CRBN: XZ424, XZ739; VHL: DT2216, PZ703b, 753b) showed a significant improvement in platelet therapeutic index than their parent molecules (ABT-263: DT2216, PZ703b, 753b, XZ739, PZ15227; A1155463: XZ424). Other than their distinctive pharmacology, PROTACs are molecularly large, which limits their cell permeability and plays a role in improving their cell selectivity. We also discuss prodrug-based approaches, such as antibody-drug conjugates (ABBV-155), phosphate prodrugs (APG-1252), dendrimer conjugate (AZD0466), and glycosylated conjugates (Nav-Gal). Studies of in-vitro, in-vivo, structure-activity relationships, biophysical characterization, and status of preclinical/clinical inhibitors derived from these strategies are also discussed in the review.


Antineoplastic Agents , Blood Platelets , Neoplasms , bcl-X Protein , Antineoplastic Agents/toxicity , Blood Platelets/drug effects , Chimera/metabolism , Dendrimers , Humans , Intercellular Signaling Peptides and Proteins , Neoplasms/drug therapy , Piperazines , Prodrugs , Proteolysis , Ubiquitin-Protein Ligases/metabolism , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism
6.
Cell Rep ; 38(7): 110374, 2022 02 15.
Article En | MEDLINE | ID: mdl-35172148

The heterogeneous therapy response observed in colorectal cancer is in part due to cancer stem cells (CSCs) that resist chemotherapeutic insults. The anti-apoptotic protein BCL-XL plays a critical role in protecting CSCs from cell death, where its inhibition with high doses of BH3 mimetics can induce apoptosis. Here, we screen a compound library for synergy with low-dose BCL-XL inhibitor A-1155463 to identify pathways that regulate sensitivity to BCL-XL inhibition and reveal that fibroblast growth factor receptor (FGFR)4 inhibition effectively sensitizes to A-1155463 both in vitro and in vivo. Mechanistically, we identify a rescue response that is activated upon BCL-XL inhibition and leads to rapid FGF2 secretion and subsequent FGFR4-mediated post-translational stabilization of MCL-1. FGFR4 inhibition prevents MCL-1 upregulation and thereby sensitizes CSCs to BCL-XL inhibition. Altogether, our findings suggest a cell transferable induction of a FGF2/FGFR4 rescue response in CRC that is induced upon BCL-XL inhibition and leads to MCL-1 upregulation.


Colorectal Neoplasms/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , bcl-X Protein/antagonists & inhibitors , Aged , Animals , Axitinib/pharmacology , Benzothiazoles/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Colon/pathology , Drug Evaluation, Preclinical , Drug Synergism , Female , Humans , Indoles/pharmacology , Isoquinolines/pharmacology , Male , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Organoids/drug effects , Organoids/metabolism , bcl-X Protein/metabolism
7.
Biochem Biophys Res Commun ; 588: 97-103, 2022 01 15.
Article En | MEDLINE | ID: mdl-34953212

Apoptosis plays an essential role in maintaining cellular homeostasis and preventing cancer progression. Bcl-xL, an anti-apoptotic protein, is an important modulator of the mitochondrial apoptosis pathway and is a promising target for anticancer therapy. In this study, we identified octenidine as a novel Bcl-xL inhibitor through structural feature-based deep learning and molecular docking from a library of approved drugs. The NMR experiments demonstrated that octenidine binds to the Bcl-2 homology 3 (BH3) domain-binding hydrophobic region that consists of the BH1, BH2, and BH3 domains in Bcl-xL. A structural model of the Bcl-xL/octenidine complex revealed that octenidine binds to Bcl-xL in a similar manner to that of the well-known Bcl-2 family protein antagonist ABT-737. Using the NanoBiT protein-protein interaction system, we confirmed that the interaction between Bcl-xL and Bak-BH3 domains within cells was inhibited by octenidine. Furthermore, octenidine inhibited the proliferation of MCF-7 breast and H1299 lung cancer cells by promoting apoptosis. Taken together, our results shed light on a novel mechanism in which octenidine directly targets anti-apoptotic Bcl-xL to trigger mitochondrial apoptosis in cancer cells.


Artificial Intelligence , Imines/pharmacology , Pyridines/pharmacology , bcl-X Protein/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Humans , Imines/chemistry , Molecular Docking Simulation , Neoplasms/pathology , Protein Binding/drug effects , Pyridines/chemistry , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-X Protein/chemistry
8.
J Mol Model ; 27(11): 317, 2021 Oct 11.
Article En | MEDLINE | ID: mdl-34633547

B-cell lymphoma/leukemia gene-2(Bcl-2) protein family known for regulating cell cycle arrest and subsequent cell death is highly expressed in a variety of cancers. Among them, the Bcl-xL and Bcl-2 are two essential proteins in the Bcl-2 family. In the present work, the differences in binding modes as between the two proteins and two ligands ABT-263/43b were investigated and compared. And the computational alanine scanning combined with the recently developed interaction entropy (AS-IE) method was employed for predicting their binding free energies and finding those amino acids that were more critical during the binding process. The result showed that the binding free energy calculated by the AS-IE method was more in line with experimental values than the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method. Besides, no significant difference was found between Bcl-xL and ABT-263/43b in the binding free energy, which Bcl-xL showed slightly weaker binding free energy to 43b because of the fewer number of key residues with interactions. Nonetheless, compared with the Bcl-2 and 43b complex, the Bcl-2 and ABT-263 system had greater number of key residues interacting with ABT-263, in particular, contribute favorably, resulting in a stronger binding ability for the Bcl-2 and ABT-263 systems. The van der Waals and hydrogen bond contributions were significant in the four protein-ligand complexes. Overall, Tyr108 was found to be the common key residues in the Bcl-xL-ligand complex, while Tyr105, Glu100, and Glu143 were established as the common key residue in the Bcl-2-ligand systems. We hope that the predicted hot spot residues and their energy distributions can guide the design of peptide and small-molecule drugs targeting Bcl-xL and Bcl-2.


Aniline Compounds/pharmacology , Proto-Oncogene Proteins c-bcl-2/chemistry , Sulfonamides/pharmacology , Thermodynamics , bcl-X Protein/chemistry , Aniline Compounds/chemistry , Entropy , Humans , Hydrogen Bonding/drug effects , Ligands , Molecular Dynamics Simulation , Protein Binding , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/chemistry , bcl-X Protein/antagonists & inhibitors
9.
J Med Chem ; 64(19): 14230-14246, 2021 10 14.
Article En | MEDLINE | ID: mdl-34533954

BCL-XL and BCL-2 are important targets for cancer treatment. BCL-XL specific proteolysis-targeting chimeras (PROTACs) have been developed to circumvent the on-target platelet toxicity associated with BCL-XL inhibition. However, they have minimal effects on cancer cells that are dependent on BCL-2 or both BCL-XL and BCL-2. Here we report a new series of BCL-PROTACs. The lead PZ703b exhibits high potency in inducing BCL-XL degradation and in inhibiting but not degrading BCL-2, showing a hybrid dual-targeting mechanism of action that is unprecedented in a PROTAC molecule. As a result, PZ703b is highly potent in killing BCL-XL dependent, BCL-2 dependent, and BCL-XL/BCL-2 dual-dependent cells in an E3 ligase (VHL)-dependent fashion. We further found that PZ703b forms stable {BCL-2:PROTAC:VCB} ternary complexes in live cells that likely contribute to the enhanced BCL-2 inhibition by PZ703b. With further optimization, analogues of PZ703b could potentially be developed as effective antitumor agents by co-targeting BCL-XL and BCL-2.


Drug Discovery , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , bcl-X Protein/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Proteolysis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , bcl-X Protein/metabolism
10.
Cells ; 10(7)2021 07 02.
Article En | MEDLINE | ID: mdl-34359829

Breast cancer is the most frequent type of cancer and the major cause of mortality in women. The rapid development of various therapeutic options has led to the improvement of treatment outcomes; nevertheless, one-third of estrogen receptor (ER)-positive patients relapse due to cancer cell acquired resistance. Here, we use dynamic BH3 profiling (DBP), a functional predictive assay that measures net changes in apoptotic priming, to find new effective treatments for ER+ breast cancer. We observed anti-apoptotic adaptations upon treatment that pointed to metronomic therapeutic combinations to enhance cytotoxicity and avoid resistance. Indeed, we found that the anti-apoptotic proteins BCL-xL and MCL-1 are crucial for ER+ breast cancer cells resistance to therapy, as they exert a dual inhibition of the pro-apoptotic protein BIM and compensate for each other. In addition, we identified the AKT inhibitor ipatasertib and two BH3 mimetics targeting these anti-apoptotic proteins, S63845 and A-1331852, as new potential therapies for this type of cancer. Therefore, we postulate the sequential inhibition of both proteins using BH3 mimetics as a new treatment option for refractory and relapsed ER+ breast cancer tumors.


Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Resistance, Neoplasm/drug effects , Estrogen Receptor alpha/genetics , Piperazines/pharmacology , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Thiophenes/pharmacology , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Synergism , Estrogen Receptor alpha/metabolism , Everolimus/pharmacology , Female , Fulvestrant/pharmacology , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyridines/pharmacology , Signal Transduction , Thiazoles/pharmacology , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/genetics , bcl-X Protein/metabolism
11.
Geroscience ; 43(5): 2427-2440, 2021 10.
Article En | MEDLINE | ID: mdl-34427858

Moment-to-moment adjustment of regional cerebral blood flow to neuronal activity via neurovascular coupling (NVC or "functional hyperemia") has a critical role in maintenance of healthy cognitive function. Aging-induced impairment of NVC responses importantly contributes to age-related cognitive decline. Advanced aging is associated with increased prevalence of senescent cells in the cerebral microcirculation, but their role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis that a validated senolytic treatment can improve NVC responses and cognitive performance in aged mice. To achieve this goal, aged (24-month-old) C57BL/6 mice were treated with ABT263/Navitoclax, a potent senolytic agent known to eliminate senescent cells in the aged mouse brain. Mice were behaviorally evaluated (radial arms water maze) and NVC was assessed by measuring CBF responses (laser speckle contrast imaging) in the somatosensory whisker barrel cortex evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. ABT263/Navitoclax treatment improved NVC response, which was associated with significantly improved hippocampal-encoded functions of learning and memory. ABT263/Navitoclax treatment did not significantly affect endothelium-dependent acetylcholine-induced relaxation of aorta rings. Thus, increased presence of senescent cells in the aged brain likely contributes to age-related neurovascular uncoupling, exacerbating cognitive decline. The neurovascular protective effects of ABT263/Navitoclax treatment highlight the preventive and therapeutic potential of senolytic treatments (as monotherapy or as part of combination treatment regimens) as effective interventions in patients at risk for vascular cognitive impairment (VCI).


Aging , Aniline Compounds/pharmacology , Hyperemia , Senotherapeutics/pharmacology , Sulfonamides/pharmacology , Animals , Hyperemia/drug therapy , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , bcl-X Protein/antagonists & inhibitors
12.
Cell Death Dis ; 12(8): 772, 2021 08 05.
Article En | MEDLINE | ID: mdl-34354046

Advanced nasopharyngeal carcinoma (NPC) has a poor prognosis, with an unfavorable response to palliative chemotherapy. Unfortunately, there are few effective therapeutic regimens. Therefore, we require novel treatment strategies with enhanced efficacy. The present study aimed to investigate the antitumor efficacy of APG-1252-M1, a dual inhibitor of BCL-2/BCL-XL, as a single agent and combined with gemcitabine. We applied various apoptotic assays and used subcutaneous transplanted NPC model to assess the in vitro and in vivo antitumor activity. Moreover, phospho-tyrosine kinase array was used to investigate the combined therapy's potential synergistic mechanism. In addition, further validation was performed using immunohistochemistry and western blotting. In vitro, we observed that APG-1252-M1 had moderate antitumor activity toward NPC cells; however, it markedly improved gemcitabine's ability to promote NPC cell apoptosis and suppress invasion, migration, and proliferation. Specifically, APG-1252 plus gemcitabine exhibited even remarkable antitumor activity in vivo. Mechanistically, the drug combination synergistically suppressed NPC by activating caspase-dependent pathways, blocking the phospho (p)-JAK-2/STAT3/MCL-1 signaling pathway, and inhibiting epithelial-mesenchymal transition. In conclusion, the results indicated that the combination of APG-1252 and gemcitabine has synergistic anticancer activities against NPC, providing a promising treatment modality for patients with NPC.


Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Deoxycytidine/analogs & derivatives , Janus Kinase 2/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Piperidines/pharmacology , STAT3 Transcription Factor/metabolism , Small Molecule Libraries/pharmacology , bcl-X Protein/antagonists & inhibitors , Aniline Compounds/therapeutic use , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Deoxycytidine/pharmacology , Drug Synergism , Epithelial-Mesenchymal Transition/drug effects , Humans , Models, Biological , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Neoplasm Invasiveness , Piperidines/therapeutic use , Signal Transduction/drug effects , bcl-X Protein/metabolism , Gemcitabine
13.
Aging (Albany NY) ; 13(15): 19750-19759, 2021 08 05.
Article En | MEDLINE | ID: mdl-34351305

AIM: Overexpression of BCL2L1 (BCL-xL) was associated with platinum resistance in ovarian cancer (OvCa). However, role of copy number (CN) gain of BCL2L1 in OvCa remains elusive. METHODS: In silico analyses of multiple public datasets were perform. Validation was carried out in our tissue microarray (TMA) of OvCa cases. In vitro and in vivo assays was performed to explore potential targeted compound against BCL2L1-gained OvCa. RESULTS: BCL2L1 was gained in ~60% of OvCa. BCL2L1 was differentially expressed between healthy and cancerous ovarian cases. BCL2L1 gain was not prognostic either in overall or in progression-free survival but higher BCL2L1 expression was associated with worsened survival, indicating biological distinction between CN gain and overexpression of the gene. BCL2L1 gain was associated with multi-resistance to various drug with no significant sensitivity to any single agent. Only CRISPR-mediated BCL2L1 knockout, but not shRNA could be inhibitive. Combined genetic silencing of FGFR4/NCAM and BCL2L1 with shRNA induced potent inhibition of BCL2L1-gained OvCa with durable effect. Combined inhibition of FGFR/BCL-xL was required for inhibiting BCL2L1-gained OvCa in vitro and in vivo. Only dual inhibition of FGFR/BCL-xL without platinum was tolerable in vivo. CONCLUSION: Gain of BCL2L1 is associated with resistance to multiple anti-cancer agents in OvCa. Dual inhibition of FGFR4 and BCL-xL showed potent effect and tolerable toxicity, holding promise to further translation.


Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Ovarian Neoplasms/genetics , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , bcl-X Protein/antagonists & inhibitors , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Survival , Female , Humans , Mice , Ovarian Neoplasms/drug therapy , RNA, Small Interfering/pharmacology , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Xenograft Model Antitumor Assays , bcl-X Protein/genetics , bcl-X Protein/metabolism
14.
Cell Death Dis ; 12(7): 694, 2021 07 13.
Article En | MEDLINE | ID: mdl-34257274

Hypoxia, a characteristic of most human solid tumors, is a major obstacle to successful radiotherapy. While moderate acute hypoxia increases cell survival, chronic cycling hypoxia triggers adaptation processes, leading to the clonal selection of hypoxia-tolerant, apoptosis-resistant cancer cells. Our results demonstrate that exposure to acute and adaptation to chronic cycling hypoxia alters the balance of Bcl-2 family proteins in favor of anti-apoptotic family members, thereby elevating the apoptotic threshold and attenuating the success of radiotherapy. Of note, inhibition of Bcl-2 and Bcl-xL by BH3-mimetic ABT-263 enhanced the sensitivity of HCT116 colon cancer and NCI-H460 lung cancer cells to the cytotoxic action of ionizing radiation. Importantly, we observed this effect not only in normoxia, but also in severe hypoxia to a similar or even higher extent. ABT-263 furthermore enhanced the response of xenograft tumors of control and hypoxia-selected NCI-H460 cells to radiotherapy, thereby confirming the beneficial effect of combined treatment in vivo. Targeting the Bcl-2 rheostat with ABT-263, therefore, is a particularly promising approach to overcome radioresistance of cancer cells exposed to acute or chronic hypoxia with intermittent reoxygenation. Moreover, we found intrinsic as well as ABT-263- and irradiation-induced regulation of Bcl-2 family members to determine therapy sensitivity. In this context, we identified Mcl-1 as a resistance factor that interfered with apoptosis induction by ABT-263, ionizing radiation, and combinatorial treatment. Collectively, our findings provide novel insights into the molecular determinants of hypoxia-mediated resistance to apoptosis and radiotherapy and a rationale for future therapies of hypoxic and hypoxia-selected tumor cell fractions.


Aniline Compounds/pharmacology , Apoptosis , Colonic Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Radiation Tolerance , Radiation-Sensitizing Agents/pharmacology , Sulfonamides/pharmacology , bcl-X Protein/antagonists & inhibitors , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macrolides/metabolism , Mice, Nude , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Tumor Burden/drug effects , Tumor Burden/radiation effects , Tumor Hypoxia , Tumor Microenvironment , Xenograft Model Antitumor Assays , bcl-X Protein/metabolism
15.
Bioorg Med Chem ; 44: 116282, 2021 08 15.
Article En | MEDLINE | ID: mdl-34216984

A dual Bcl-XL / Bcl-2 inhibitor was discovered from DNA-encoded libraries using a two steps process. In the first step, DNA was used to pair PNA-encoded fragments exploring > 250 000 combinations. In the second step, a focused library combining the selected fragments with linkers of different lengths and geometries led to the identification of tight binding adducts that were further investigated for their selective target engagement in pull-down assays, for their affinity by SPR, and their selectivity in a cytotoxicity assay. The best compound showed comparable cellular activity to venetoclax, the first-in-class therapeutic targeting Bcl-2.


Antineoplastic Agents/pharmacology , DNA/chemistry , Drug Discovery , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Small Molecule Libraries/pharmacology , bcl-X Protein/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , K562 Cells , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
16.
Nat Commun ; 12(1): 3705, 2021 06 17.
Article En | MEDLINE | ID: mdl-34140493

Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with poor prognosis. Up to 30% of PTCL lack distinctive features and are classified as PTCL, not otherwise specified (PTCL-NOS). To further improve our understanding of the genetic landscape and biology of PTCL-NOS, we perform RNA-sequencing of 18 cases and validate results in an independent cohort of 37 PTCL cases. We identify FYN-TRAF3IP2, KHDRBS1-LCK and SIN3A-FOXO1 as new in-frame fusion transcripts, with FYN-TRAF3IP2 as a recurrent fusion detected in 8 of 55 cases. Using ex vivo and in vivo experiments, we demonstrate that FYN-TRAF3IP2 and KHDRBS1-LCK activate signaling pathways downstream of the T cell receptor (TCR) complex and confer therapeutic vulnerability to clinically available drugs.


Adaptor Proteins, Signal Transducing/genetics , DNA-Binding Proteins/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Lymphoma, T-Cell, Peripheral/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins c-fyn/genetics , RNA-Binding Proteins/genetics , Receptors, Antigen, T-Cell/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cohort Studies , DNA-Binding Proteins/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kaplan-Meier Estimate , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Lymphoma, T-Cell, Peripheral/metabolism , Lymphoma, T-Cell, Peripheral/pathology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-fyn/metabolism , RNA-Binding Proteins/metabolism , RNA-Seq , Signal Transduction/genetics , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism
17.
J Virol ; 95(15): e0242520, 2021 07 12.
Article En | MEDLINE | ID: mdl-33980597

HIV persists, despite immune responses and antiretroviral therapy, in viral reservoirs that seed rebound viremia if therapy is interrupted. Previously, we showed that the BCL-2 protein contributes to HIV persistence by conferring a survival advantage to reservoir-harboring cells. Here, we demonstrate that many of the BCL-2 family members are overexpressed in HIV-infected CD4+ T cells, indicating increased tension between proapoptotic and prosurvival family members-and suggesting that inhibition of prosurvival members may disproportionately affect the survival of HIV-infected cells. Based on these results, we chose to study BCL-XL due to its consistent overexpression and the availability of selective antagonists. Infection of primary CD4+ T cells with HIV resulted in increased BCL-XL protein expression, and treatment with two selective BCL-XL antagonists, A-1155463 and A-1551852, led to selective death of productively infected CD4+ T cells. In a primary cell model of latency, both BCL-XL antagonists drove reductions in HIV DNA and in infectious cell frequencies both alone and in combination with the latency reversing agent bryostatin-1, with little off-target cytotoxicity. However, these antagonists, with or without bryostatin-1 or in combination with the highly potent latency reversing agent combination phorbol myristate acetate (PMA) + ionomycin, failed to reduce total HIV DNA and infectious reservoirs in ex vivo CD4+ T cells from antiretroviral therapy (ART)-suppressed donors. Our results add to growing evidence that bona fide reservoir-harboring cells are resistant to multiple "kick and kill" modalities-relative to latency models. We also interpret our results as encouraging further exploration of BCL-XL antagonists for cure, where combination approaches, including with immune effectors, may unlock the ability to eliminate ex vivo reservoirs. IMPORTANCE Although antiretroviral therapy (ART) has transformed HIV infection into a manageable chronic condition, there is no safe or scalable cure. HIV persists in "reservoirs" of infected cells that reinitiate disease progression if ART is interrupted. Whereas most efforts to eliminate this reservoir have focused on exposing these cells to immune-mediated clearance by reversing viral latency, recent work shows that these cells also resist being killed. Here, we identify a "prosurvival" factor, BCL-XL, that is overexpressed in HIV-infected cells, and demonstrate selective toxicity to these cells by BCL-XL antagonists. These antagonists also reduced reservoirs in a primary-cell latency model but were insufficient to reduce "natural" reservoirs in ex vivo CD4+ T cells-adding to growing evidence that the latter are resilient in a way that is not reflected in models. We nonetheless suggest that the selective toxicity of BCL-XL antagonists to HIV-infected cells supports their prioritization for testing in combinations aimed at reducing ex vivo reservoirs.


Benzothiazoles/pharmacology , Bryostatins/pharmacology , Disease Reservoirs/virology , Isoquinolines/pharmacology , Virus Latency/drug effects , bcl-X Protein/antagonists & inhibitors , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , HIV Infections/prevention & control , HIV-1/growth & development , Humans , Virus Replication/drug effects , bcl-X Protein/metabolism
18.
Cells ; 10(4)2021 04 06.
Article En | MEDLINE | ID: mdl-33917370

Glycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3ß in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3ß. Transfection of MIA-PaCa-2 cells with WT-GSK-3ß increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3ß often increased therapeutic sensitivity. An exception was observed with cells transfected with WT-GSK-3ß and sensitivity to the BCL2/BCLXL ABT737 inhibitor. WT-GSK-3ß reduced glycolytic capacity of the cells but did not affect the basal glycolysis and mitochondrial respiration. KD-GSK-3ß decreased both basal glycolysis and glycolytic capacity and reduced mitochondrial respiration in MIA-PaCa-2 cells. As a comparison, the effects of GSK-3 on MCF-7 breast cancer cells, which have mutant PIK3CA, were examined. KD-GSK-3ß increased the resistance of MCF-7 cells to chemotherapeutic drugs and certain signal transduction inhibitors. Thus, altering the levels of GSK-3ß can have dramatic effects on sensitivity to drugs and signal transduction inhibitors which may be influenced by the background of the tumor.


Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Dietary Supplements , Glycogen Synthase Kinase 3 beta/metabolism , Molecular Targeted Therapy , Pancreatic Neoplasms/drug therapy , Adenocarcinoma/drug therapy , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Adenylate Kinase/metabolism , Antineoplastic Agents/pharmacology , Berberine/pharmacology , Berberine/therapeutic use , Biphenyl Compounds/pharmacology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Diabetes Mellitus/drug therapy , Disease Progression , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Female , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Glycolysis/drug effects , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Malaria/drug therapy , Metformin/pharmacology , Metformin/therapeutic use , Neoplasm Metastasis , Nitrophenols/pharmacology , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Sulfonamides/pharmacology , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Tumor Stem Cell Assay , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism , Gemcitabine
19.
J Med Chem ; 64(9): 5447-5469, 2021 05 13.
Article En | MEDLINE | ID: mdl-33904752

The BCL-2 family of proteins (including the prosurvival proteins BCL-2, BCL-XL, and MCL-1) is an important target for the development of novel anticancer therapeutics. Despite the challenges of targeting protein-protein interaction (PPI) interfaces with small molecules, a number of inhibitors (called BH3 mimetics) have entered the clinic and the BCL-2 inhibitor, ABT-199/venetoclax, is already proving transformative. For BCL-XL, new validated chemical series are desirable. Here, we outline the crystallography-guided development of a structurally distinct series of BCL-XL/BCL-2 inhibitors based on a benzoylurea scaffold, originally proposed as α-helix mimetics. We describe structure-guided exploration of a cryptic "p5" pocket identified in BCL-XL. This work yields novel inhibitors with submicromolar binding, with marked selectivity toward BCL-XL. Extension into the hydrophobic p2 pocket yielded the most potent inhibitor in the series, binding strongly to BCL-XL and BCL-2 (nanomolar-range half-maximal inhibitory concentration (IC50)) and displaying mechanism-based killing in cells engineered to depend on BCL-XL for survival.


Antineoplastic Agents/chemistry , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Urea/analogs & derivatives , bcl-X Protein/antagonists & inhibitors , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Biphenyl Compounds/chemistry , Biphenyl Compounds/metabolism , Cell Line , Cell Survival/drug effects , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Mice , Molecular Dynamics Simulation , Nitrophenols/chemistry , Nitrophenols/metabolism , Piperazines/chemistry , Piperazines/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/metabolism , Surface Plasmon Resonance , Urea/metabolism , Urea/pharmacology , bcl-X Protein/genetics , bcl-X Protein/metabolism
20.
Dev Cell ; 56(7): 976-984.e3, 2021 04 05.
Article En | MEDLINE | ID: mdl-33823136

Axon remodeling through sprouting and pruning contributes to the refinement of developing neural circuits. A prominent example is the pruning of developing sensory axons deprived of neurotrophic support, which is mediated by a caspase-dependent (apoptotic) degeneration process. Distal sensory axons possess a latent apoptotic pathway, but a cell body-derived signal that travels anterogradely down the axon is required for pathway activation. The signaling mechanisms that underlie this anterograde process are poorly understood. Here, we show that the tumor suppressor P53 is required for anterograde signaling. Interestingly loss of P53 blocks axonal but not somatic (i.e., cell body) caspase activation. Unexpectedly, P53 does not appear to have an acute transcriptional role in this process and instead appears to act in the cytoplasm to directly activate the mitochondrial apoptotic pathway in axons. Our data support the operation of a cytoplasmic role for P53 in the anterograde death of developing sensory axons.


Axons/physiology , Sensory Receptor Cells/physiology , Tumor Suppressor Protein p53/physiology , Animals , Axons/enzymology , Axons/metabolism , Caspases/metabolism , Cells, Cultured , Cytoplasm/metabolism , Mice , Protein Domains , Sensory Receptor Cells/enzymology , Sensory Receptor Cells/metabolism , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , bcl-X Protein/antagonists & inhibitors
...